Mixture of Expert Agents for Handling Imbalanced Data Sets
نویسندگان
چکیده
Many real-world data sets exhibit skewed class distributions in which almost all cases are allotted to a class and far fewer cases to a smaller, usually more interesting class. A classifier induced from an imbalanced data set has, typically, a low error rate for the majority class and an unacceptable error rate for the minority class. This paper firstly provides a systematic study on the various methodologies that have tried to handle this problem. Finally, it presents an experimental study of these methodologies with a proposed mixture of expert agents and it concludes that such a framework can be a more effective solution to the problem. Our method seems to allow improved identification of difficult small classes in predictive analysis, while keeping the classification ability of the other classes in an acceptable level.
منابع مشابه
On Mining Fuzzy Classification Rules for Imbalanced Data
Fuzzy rule-based classification system (FRBCS) is a popular machine learning technique for classification purposes. One of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended ...
متن کاملOn Mining Fuzzy Classification Rules for Imbalanced Data
Fuzzy rule-based classification system (FRBCS) is a popular machine learning technique for classification purposes. One of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended ...
متن کاملCombining rough sets and rule based classifiers for handling imbalanced data
The paper presents two rough sets based filtering approaches combined with rule based classifiers suited for handling imbalanced data sets, i.e., data sets where the minority class of primary importance is under-represented in comparison to the majority classes. We introduced two techniques to detect and process inconsistent majority cases in the boundary between the minority and majority class...
متن کاملOn the influence of an adaptive inference system in fuzzy rule based classification systems for imbalanced data-sets
Classification with imbalanced data-sets supposes a new challenge for researches in the framework of data mining. This problem appears when the number of examples that represents one of the classes of the data-set (usually the concept of interest) is much lower than that of the other classes. In this manner, the learning model must be adapted to this situation, which is very common in real appl...
متن کاملAn unsupervised self-organizing learning with support vector ranking for imbalanced datasets
The aim of computational learning algorithm is to establish grounds that work for any types of data, once and for all. However, majority of the classifiers have their base from balanced datasets. This paper discusses the issues related to imbalanced data distribution problem and the common strategy to deal with imbalance datasets. We propose a model capable of handling imbalance datasets well i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003